Nvidia Data Science, AI, and ML Training
Businesses worldwide are using artificial intelligence to solve their greatest challenges. Healthcare professionals use AI to enable more accurate, faster diagnoses in patients. Retail businesses use it to offer personalized customer shopping experiences. Automakers use it to make personal vehicles, shared mobility, and delivery services safer and more efficient. Deep learning is a powerful AI approach that uses multi-layered artificial neural networks to deliver state-of-the-art accuracy in tasks such as object detection, speech recognition, and language translation. Using deep learning, computers can learn and recognize patterns from data that are considered too complex or subtle for expert-written software.
Conversational AI is the technology that powers automated messaging and speech-enabled applications, and its applications are used in diverse industries to improve the overall customer experience and customer service efficiency. Conversational AI pipelines are complex and expensive to develop from scratch. In this course, you’ll learn how to build conversational AI services using the NVIDIA® Riva framework. With Riva, developers can create customized language-based AI services for intelligent virtual assistants, virtual customer service agents, real-time transcription, multi-user diarization, chatbots, and much more.
Recent advancements in both the techniques and accessibility of large language models (LLMs) have opened up unprecedented opportunities for businesses to streamline their operations, decrease expenses, and increase productivity at scale. Enterprises can also use LLM-powered apps to provide innovative and improved services to clients or strengthen customer relationships. For example, enterprises could provide customer support via AI virtual assistants or use sentiment analysis apps to extract valuable customer insights.
Modern deep learning challenges leverage increasingly larger datasets and more complex models. As a result, significant computational power is required to train models effectively and efficiently. Learning to distribute data across multiple GPUs during deep learning model training makes possible an incredible wealth of new applications utilizing deep learning. Additionally, the effective use of systems with multiple GPUs reduces training time, allowing for faster application development and much faster iteration cycles. Teams who are able to perform training using multiple GPUs will have an edge, building models trained on more data in shorter periods of time and with greater engineer productivity.
Modern deep learning challenges leverage increasingly larger datasets and more complex models. As a result, significant computational power is required to train models effectively and efficiently. Learning to distribute data across multiple GPUs during deep learning model training makes possible an incredible wealth of new applications utilizing deep learning. Additionally, the effective use of systems with multiple GPUs reduces training time, allowing for faster application development and much faster iteration cycles. Teams who are able to perform training using multiple GPUs will have an edge, building models trained on more data in shorter periods of time and with greater engineer productivity.
Whether you work at a software company that needs to improve customer retention, a financial services company that needs to mitigate risk, or a retail company interested in predicting customer purchasing behavior, your organization is tasked with preparing, managing, and gleaning insights from large volumes of data without wasting critical resources. Traditional CPU-driven data science workflows can be cumbersome, but with the power of GPUs, your teams can make sense of data quickly to drive business decisions.
Data engineering is the foundation of data science and lays the groundwork for analysis and modeling. In order for organizations to extract knowledge and insights from structured and unstructured data, fast access to accurate and complete datasets is critical. Working with massive amounts of data from disparate sources requires complex infrastructure and expertise. Minor inefficiencies can result in major costs, both in terms of time and money, when scaled across millions to trillions of data points.
Whether your organization needs to monitor cybersecurity threats, fraudulent financial transactions, product defects, or equipment health, artificial intelligence can help catch data abnormalities before they impact your business. AI models can be trained and deployed to automatically analyze datasets, define “normal behavior,” and identify breaches in patterns quickly and effectively. These models can then be used to predict future anomalies. With massive amounts of data available across industries and subtle distinctions between normal and abnormal patterns, it’s critical that organizations use AI to quickly detect anomalies that pose a threat.
According to the International Society of Automation, $647 billion is lost globally each year due to downtime from machine failure. Organizations across manufacturing, aerospace, energy, and other industrial sectors are overhauling maintenance processes to minimize costs and improve efficiency. With artificial intelligence and machine learning, organizations can apply predictive maintenance to their operation, processing huge amounts of sensor data to detect equipment failure before it happens. Compared to routine-based or time-based preventative maintenance, predictive maintenance gets ahead of the problem and can save a business from costly downtime.