Duration: 2 days


This AI/ML Tools training course provides an in-depth examination of the tools and techniques used in monitoring artificial intelligence (AI) and machine learning (ML) models, focusing particularly on those in production. Participants will also learn how to detect and address model drift over time, as well as monitoring for data quality, privacy, and security.


  • Understand the importance and types of AI/ML model monitoring
  • Know how to detect anomalies in model behavior
  • Understand the practical applications of anomaly detection in AI/ML monitoring


This course is designed for

  • Data Science DevOps
  • Data Engineers
  • Data Scientists
  • ML Engineers


Students should arrive at class with a comprehensive understanding of the following topics:

  • Cloud Architecture Basics
  • Machine Learning Fundamentals
  • Data Science Pipelines

Software requirements

Students will require the following software to be installed to facilitate the class:

  • Zoom
  • Web Browser

Outline for Tools for Monitoring AI/ML Training

  • Chapter 1: Introduction to Monitoring AI/ML Models
    • Importance of monitoring AI/ML models
    • Key metrics for monitoring AI/ML models
    • Monitoring for model performance vs. monitoring for application performance
    • Monitoring throughout the Data Science pipeline
  • Chapter 2: Monitoring Data Quality
    • Understanding data quality issues in AI/ML applications.
    • Tools and techniques for monitoring data quality.
    • How data quality issues affect model performance and strategies to manage this.
  • Chapter 3: Detecting and Addressing Model Drift
    • Understanding model drift
    • Techniques for detecting model drift and data drift
    • Tools for drift detection (e.g., AWS SageMaker Model Monitor, Seldon Alibi-Detect)
    • Strategies for addressing model drift
  • Chapter 4: Advanced Topics in AI/ML Monitoring
    • Monitoring complex models (e.g., deep learning models)
    • Monitoring at scale: big data considerations
    • Continuous monitoring and automated anomaly detection
  • Chapter 5: Monitoring for AI/ML Security
    • Understanding adversarial attacks on AI/ML models.
    • Importance of security monitoring in AI/ML.
    • Tools for monitoring and mitigating adversarial attacks.
  • Chapter 6: Privacy, Fairness, and Compliance Considerations
    • How privacy regulations impact AI/ML monitoring.
    • Tools and best practices for privacy-preserving AI/ML monitoring.
    • Case studies in AI/ML privacy and compliance.
    • Understanding model fairness and bias
    • Tools for fairness and bias monitoring (e.g., Fairlearn, Aequitas)
    • Case studies of fairness and bias monitoring
  • Conclusion
01/15/2024 - 01/16/2024
10:00 AM - 06:00 PM
Eastern Standard Time
Online Virtual Class
USD $1,575.00
02/19/2024 - 02/20/2024
10:00 AM - 06:00 PM
Eastern Standard Time
Online Virtual Class
USD $1,575.00
03/25/2024 - 03/26/2024
10:00 AM - 06:00 PM
Eastern Standard Time
Online Virtual Class
USD $1,575.00