Objectives

  • Use Connector stages to read from and write to database tables
  • Handle SQL errors in Connector stages
  • Use Connector stages with multiple input links
  • Use the File Connector stage to access Hadoop HDFS data
  • Optimize jobs that write to database tables
  • Use the Unstructured Data stage to extract data from Excel spreadsheets
  • Use the Data Masking stage to mask sensitive data processed within a DataStage job
  • Use the Hierarchical stage to parse, compose, and transform XML data
  • Use the Schema Library Manager to import and manage XML schemas
  • Use the Data Rules stage to validate fields of data within a DataStage job
  • Create custom data rules for validating data
  • Design a job that processes a star schema data warehouse with Type 1 and Type 2 slowly changing dimensions

Audience

Experienced DataStage developers seeking training in more advanced DataStage job techniques and who seek techniques for working with complex types of data resources.

Prerequisites

DataStage Essentials course or equivalent.

Duration

Two days

Outline for IBM InfoSphere DataStage v11.5 - Advanced Data Processing Training

Unit 1 –Accessing databases


Topic 1:  Connector stage overview


• Use Connector stages to read from and write to relational tables
• Working with the Connector stage properties

Topic 2:  Connector stage functionality

• Before / After SQL
• Sparse lookups
• Optimize insert/update performance


Topic 3:  Error handling in Connector stages


• Reject links
• Reject conditions


Topic 4:  Multiple input links


• Designing jobs using Connector stages with multiple input links
• Ordering records across multiple input links


Topic 5:  File Connector stage


• Read and write data to Hadoop file systems


Demonstration 1: Handling database errors
Demonstration 2:  Parallel jobs with multiple Connector input links
Demonstration 3:  Using the File Connector stage to read and write HDFS files


Unit 2 – Processing unstructured data


Topic 1:  Using the Unstructured Data stage in DataStage jobs


• Extract data from an Excel spreadsheet
• Specify a data range for data extraction in an Unstructured Data stage
• Specify document properties for data extraction.


Demonstration 1:  Processing unstructured data


Unit 3 – Data masking


Topic 1:  Using the Data Masking stage in DataStage jobs


• Data masking techniques
• Data masking policies
• Applying policies for masquerading context-aware data types
• Applying policies for masquerading generic data types
• Repeatable replacement
• Using reference tables
• Creating custom reference tables


Demonstration 1: Data masking


Unit 4 – Using data rules


Topic 1:  Introduction to data rules


• Using the Data Rules Editor
• Selecting data rules
• Binding data rule variables
• Output link constraints
• Adding statistics and attributes to the output information


Topic 2:  Use the Data Rules stage to valid foreign key references in source data


Topic 3:  Create custom data rules


Demonstration 1:  Using data rules


Unit 5 – Processing XML data


Topic 1:  Introduction to the Hierarchical stage


• Hierarchical stage Assembly editor
• Use the Schema Library Manager to import and manage XML schemas


Topic 2:  Composing XML data


• Using the HJoin step to create parent-child relationships between input lists
• Using the Composer step


Topic 3:  Writing Hierarchical data to a relational table


Topic 4:  Using the Regroup step


Topic 5:  Consuming XML data


• Using the XML Parser step
• Propagating columns


Topic 6:  Transforming XML data


• Using the Aggregate step
• Using the Sort step
• Using the Switch step
• Using the H-Pivot step


Demonstration 1:  Importing XML schemas
Demonstration 2: Compose hierarchical data
Demonstration 3: Consume hierarchical data
Demonstration 4:  Transform hierarchical data


Unit 6:  Updating a star schema database


Topic 1:  Surrogate keys


• Design a job that creates and updates a surrogate key source key file from a dimension table
Topic 2:  Slowly Changing Dimensions (SCD) stage
• Star schema databases
• SCD stage Fast Path pages
• Specifying purpose codes
• Dimension update specification
• Design a job that processes a star schema database with Type 1 and Type 2 slowly changing dimensions


Demonstration 1: Build a parallel job that updates a star schema database with two dimensions